
International Journal of Fuzzy Systems, Vol. 16, No. 1, March 2014

© 2014 TFSA

9

Fuzzy Logic Controller of Gentle Random Early Detection
Based on Average Queue Length and Delay Rate

Mahmoud Baklizi, Hussein Abdel-Jaber, Ahmad Adel Abu-Shareha, Mosleh M. Abualhaj,

and Sureswaran Ramadass

Abstract1

This paper proposes a controller technique for
early stage congestion detection at the router buffer
in the networks. The proposed technique extends the
well-known Gentle Random Early Detection (GRED)
algorithm. Unlike GRED, which relies on parameter
settings, such as minthreshold, maxthreshold and
double maxthreshold, in order to obtain a satisfac-
tory performance, the proposed technique depends
on a fuzzy logic system which reduces the large de-
pendency on parameter settings. The proposed tech-
nique uses the average queue length and the delay
rate as input linguistic variables for a fuzzy logic sys-
tem. The utilized fuzzy logic system produces a single
output that represents a packet dropping probability,
which in turn control and prevent congestion in early
stage. The proposed technique and the well-know
GRED and REDD1 algorithms were simulated using
Java environment. The performance of the proposed
technique has been evaluated and compared with re-
gard to various performance measures, which are:
mean queue length, throughput, average queuing de-
lay, packet loss and packet dropping probability. The
simulation results show that the proposed technique,
in comparison with the existing algorithms, offers
better performance results in terms of mean queue
length, average queuing delay and packet loss.
Therefore, this technique, generally, improves the
network performance.

Corresponding Author: Mahmoud Baklizi is with the National Ad-
vanced IPv6 Center of Excellence (NAv6), Universiti Sains Malaysia,
Penang 11800, Malaysia. E-mail: mbaklizi@nav6.org
Hussein Abdel-jaber is with the Department of Computer Information
and Network Systems, The World Islamic Sciences and Education
(W.I.S.E.) University, Jordan. E-mail: husein.abdeljaber@wise.edu.jo
Ahmad Adel Abu-Shareha is with the Department of Computer Sci-
ence, The World Islamic Sciences and Education (W.I.S.E.) Univer-
sity, Jordan. E:mail: abushareha@wise.edu.jo
Mosleh M. Abualhaj is with the Department of Networks and Infor-
mation Security, Faculty of Information Technology, Al-Ahliyya
Amman University, Jordan. E-mail: m.abualhaj@ammanu.edu.jo
Sureswaran Ramadass is with the National Advanced IPv6 Center of
Excellence (NAv6), Universiti Sains Malaysia, Penang 11800, Ma-
laysia. E-mail: sures@nav6.org
Manuscript received 3 July 2012; revised 11 Sep. 2013; accepted 12
Feb. 2014.

Keywords: Congestion control, fuzzy logic, gentle ran-
dom early detection, queuing systems.

1. Introduction

With the rapid growth of computer networks and In-
ternet technologies, managing network resources such as
bandwidth allocation and queue spaces in various net-
works is essential. When the networks fail to manage
and keep up its resources, unfair bandwidth sharing
among the network connections occurs. In such a case,
some network connections may engage queue spaces
more than others. Subsequently, these connections will
increase their transmitting rates compared to others, this
is what so called aggressive connections [1, 2]. When the
transmission rate of some aggressive connections in-
creases, the router queues built up, accordingly, router
queues are overflowed and leads to unmanageable pack-
ets dropping. In such a case, the network is said to be
congested.

Congestion is one of the major problems that chal-
lenge network performance [3, 4]. Congestion occurs at
the buffers of the network routers when the amount of
incoming packets exceeds the available network re-
sources and the buffer can no longer handle all incoming
packets [5]. Generally, congestion plays a major role in
worsening computer network performance by increasing
the packet dropping probability (Dp) and growing the
packet loss probability (PL). In addition, congestion may
lead to an increase in the mean queue length (mql) and
the packets average queuing delay (D), congestion may
also cause an unbalanced share among the network
sources which successfully degrade the amount of pack-
ets passing through the buffer of the routers, namely, the
throughput (T) [1].

Early work in controlling congestion comes up with
Drop Tail (DT) technique [6, 7]. DT control congestion
using a fixed router buffer size assigned based on the
network administrator awareness. Generally, there are
two scenarios in which the DT is executed. First, DT sets
the router buffers to the maximum in order to obtain a
high T. However, this causes a drawback of high D. Se-
cond, DT sets its router buffer to relatively small length.
In such a case the network resources managed by DT

Cop
y R

igh
ts

 International Journal of Fuzzy Systems, Vol. 16, No. 1, March 2014

10

technique provide low D. However, this scenario ac-
commodated with several drawback of high PL, high Dp
and low T. Finally, DT suffers also from other draw-
backs such as lockout phenomenon and full router buff-
ers. Generally, it has proven that DT degrades the per-
formance of network [8].

Later on, Active Queue Management (AQM) methods
have been developed to overcome the aforementioned
DT problems and provide sufficient resource manage-
ment [4, 9, 10]. Random Early Detection (RED), one of
the most significant algorithms for congestion control,
manages congestion before the router buffer overflows
based on the computed average queue length (aql) and
the calculated minimum and maximum thresholds values
[8]. Generally, RED detects congestion as follows: when
a packet arrives at the router buffer, RED computes aql
of the underlying buffer and compares it with the mini-
mum and maximum threshold positions. An aql value
that is smaller than the minimum threshold gives a sign
for no congestion, thus, the packet is passed to the queue
and no packet is dropped. If the aql value is between the
two thresholds, the arriving packet is dropped probabil-
istically to alleviate congestion at the underlying buffer.
Finally, when the aql is above the maximum threshold,
all arriving packets are dropped at a Dp value equal to
one.

Based on the previously discussed scenarios, RED al-
gorithm provides acceptable performance when the traf-
fic load is steady. However, when the load increases
suddenly, RED drops many subsequent packets which
lead to reduce the network performance. In some other
situation, because RED depends on the amount of traffic
load in controlling congestion, the computed aql may
become above the maximum threshold, and as a result,
every arriving packet will be dropped. In addition to the
previously discussed drawbacks, RED requires a supe-
rior parameter setting for the maximum and minimum
thresholds, queue weight (qw) and maximum packet
dropping probability (Dmax), to ensure achieving a satis-
factory performance. Parameter setting, however, is not
necessary possible in actively changed networks.

Generally, the need for accurate parameter settings
and the expected unbalanced load in most networks
made RED inefficient technique. Consequently, this pa-
per proposes a dynamic technique for congestion control
based on the existing AQM algorithms and using Fuzzy
Logic (FL) system that identifies congestion incipiently
at router buffers. The purpose of the proposed technique
is to improve the network performances when a high
congestion situation occurs without the need for great
parameter settings.

Fuzzy logic, which is commonly known as Computa-
tional Intelligence (CI), is one of the most important
tools that have been used to control methods in commu-

nication data networks, as fuzzy logic is effective alter-
native for heavily parameterized systems [11]. Fuzzy
logic approach in classical control theory is used either
to alleviate the system’s complex parameters in the
mathematical model, or to simplify the model to some
extent, in order to obtain some stability results, or to
make model tractable for the controller design [12]. In
addition, Fuzzy Logic Control (FLC) has been used
successfully for controlling many systems in which
analytical models are not easily obtainable or the model
itself, if available, is too complex and possibly highly
nonlinear [11].

For congestion control, in recent years, fuzzy logic
has been used as a solution to several problems and has
demonstrated the applicability of fuzzy logic to the
problem of congestion control [13, 14]. FLC has been
used due to its capability of qualitatively capturing the
attributes of a control system based on observable phe-
nomena. Thus, if the FLC is designed with a good (intui-
tive) understanding of the system, the limitations due
to the complexity of the system’s parameters can be
avoided [11, 12].

Generally, the proposed technique uses Fuzzy Infer-
ence Process (FIP) as congestion detectors. FL is a set of
mathematical expressions for knowledge representation
[15-18]. The output of FL system, unlike the classical
Binary Logic (CBL) [19], is a continuous truth value
between (0-1) [15-18]. Fuzzy Logic Controller (FLC) is
an expert system, implements a knowledge-based deci-
sion using some experience [16, 17]. FLC component
process an input and produce an output by applying them
into fuzzy linguistic rules. Generally, FLC has four steps
(fuzzification, evaluation of the rules, aggregation the
outputted rules, deffuzzification) [17, 20]. Those stapes
are implemented and discussed in the rest of the paper as
a basis for congestion control in the core of the proposed
technique.

The rest of the paper is organized as follows. Section
2 presents previous related work. The proposed algo-
rithm is discussed in Section 3. Section 4 presents the
simulation information. The results of the developed
simulation are discussed in Section 5. Finally, conclu-
sions are stated in Section 6.

2. Related Work

Enormous algorithms for congestion control have
been developed based on RED and other discrete-time
queue analytical models to enhance the network per-
formance. Gentle Random Early Detection (GRED) [21]
and REDD1 [22] are the most powerful algorithms in the
literature [23-25]. GRED was proposed by Floyd to
overcome RED’s limitations [10, 21, 26]. The main goal
of the GRED algorithm, similar to RED, is to manage

Cop
y R

igh
ts

M. Baklizi et al.: Fuzzy Logic Controller of Gentle Random Early Detection Based on Average Queue Length and Delay Rate

11

and control the congestion networks at the early stage.
Although, GRED employs a similar approach used by
RED in calculating the Dp, it depends on stabilizing the
aql at a certain level based on three thresholds which are:
minimum, maximum, and double maximum. Generally,
GRED control congestion as illustrated in Figure
1.GRED pseudo-code is described in Algorithm 1.

Unfortunately, GRED does not perform well in dy-
namically change network. This is because it sets its pa-
rameters to specific values (i.e., parameterization), con-
sequently, when a heavy congestion suddenly occurs
while aql is less than the minimum threshold, aql will
take time to adjust, which will likely leads to buffer
overflow during the adjustment process. In which case,
no packets are dropped, although the GRED router buff-
er overflows.

REDD1 was proposed, by Thiruchelvi and Raja [14],
based on calculating the aql for every arriving packet,
similar to RED and GRED. However, the dropping
probability (DP) is calculated using FL as DP= {zero,
low, moderate, high}. The value of Dp is determined us-
ing aql and PL, which are considered as two input lin-
guistic variables. These variables are linked to a fuzzy
set. The fuzzy sets as, aql = {conservative, middle, ag-
gressive} and PL = {few, medium, a lot} The REDD1
algorithm is aimed to offer fewer PL result than RED,
also REDD1 decreases the RED algorithm dependency
on its parameters, i.e. minimum and maximum thresh-
olds.

Adaptive Fuzzy RED (AFRED) [27] developed a FL
congestion control algorithm using a single input lin-
guistic variable (current queue length) to produce a sin-
gle output variable (dropping probability). The simula-
tion results of [27] showed that AFRED outperforms
RED in terms of the queue length and throughput.
Meanwhile, several algorithms have been developed us-
ing Fuzzy Logic (FL) in association with AQM, such as
those proposed by Chrysostomou [18] and Chrysosto-
mou [28]. In general, several algorithms that implements
association of FL and RED technique within TCP/IP, use
different linguistic rules for each class of service. Most
of these techniques use two input linguistic variables,
which are current queue length and the change rate in the
traffic load, and produce a single output linguistic vari-
able, which is the packet dropping probability. The re-
sults reveal that the association of FL and RED outper-
forms RED with regard to the optimization of queue size
and throughput [28-31].

Unfortunately, all the aforementioned related methods
fail to implement a congestion control that can effi-
ciently address the expected congestion cases encoun-
tered by the network resources, which in turn effect and
waste the network resources.

Figure 1. The single router buffer for GRED.

3. The Proposed Technique

The proposed technique for congestion control calcu-
lates the dropping probability based on the calculated aql
and D. The proposed technique, unlike the existing tech-
nique, does not rely upon certain parameters settings;
rather, this technique employs FIP as congestion detec-
tors. In addition, the proposed technique aims at obtain-
ing more satisfactory performance measure results when
a heavy congestion occurs. Using Fuzzy logic, the pro-
posed technique calculates the dropping probability of
each arriving packets based on two input linguistic vari-
ables (aql, delay (D)), as illustrated in Figure 2. The
proposed technique is described in Algorithm 1 and its
parameters are defined in Table 1.

Algorithm 1: The Proposed Technique
1. Begin
2. SET C = -1, aql = 0.0 // Initialization stage
3. FOR every arriving packet at a GRED router buffer,

do //2nd Stage Calculate the aql for the arriving packet
at the router buffer.

4. Examine the queue status at the router buffer (e.g.
empty or not

5. IF, the queue at the router buffer = = empty, do
6. Compute n, where n = q(current _ time - idle _ time)
7. Set aql = aql x (1 - qw) n
8. ELSE
9. Set aql = aql x (1 - qw) + qw x q_instantaneous
10. End IF
11. END FOR
12. Check the congestion status at the router buffer //3rd

stage
13. IF, aql < min_threshold, do
14. SET D = 0 .0; // No packets have dropped
15. SET C = — 1;
16. ELSE IF min threshold < aql & & aql < max thresh-

old, do
17. SET C = C +1;

18. Calculate  maxD min

max mininit

aql threshold
D

threshold threshold

 




19. Calculate
 

init

init

D

1 C DpD 
 

20. Drop arriving packet probabilistically in terms of its

pD value;

Cop
y R

igh
ts

 International Journal of Fuzzy Systems, Vol. 16, No. 1, March 2014

12

21. SET C = 0 ;
22. ELSE IF max threshold ≤ aql & &aql < double max

threshold, do
23. SET C = C +1;

24. SET    max
max

1 D max
D

maxinit

aql threshold
D

threshold

  
 

25. SET
 

init

init

D

1 C DpD 
 

26. Drop arriving packet probabilistically in terms of its
(

pD) value;

27. SET C = 0 ;
28. ELSE IF aql ≥ double max threshold, do
29. Drop every arriving packet with

pD = 1;

30. SET C = 0 ;
31. END IF
32. IF GRED router buffer becomes empty, do // 4th stage
33. SET idle time = current time ;
34. END IF
35. END

Figure 2. FIP to find the packet dropping probability.

Table 1. Adscription of parameter used.

Definitions Description
current time The current time.
idle time The beginning waiting time at the router buffer.

n
The number of packets transmitted to the router
buffer through an idle interval time.

C
A counter that represents the number of packets
arrived at the router buffer and have not dropped
since the last packet was dropped.

Dp The packet dropping probability.
Dinit The initial packet dropping probability.
q_ instantaneous The instantaneous queue length.
qw The queue weight.
Dmax The maximum value of Dinit.
q(time) The linear function for the time.
Taql target level for the aql
doublemaxthresh-
old is set to 2 x maxthreshold
K Capacity of the buffer

The procedure for the proposed technique as illus-
trated in the figure is described as follows:
 Step 1 (The fuzzification of the input crisp values (aql

and delay)): in this step the input crisp values are
calculated to specify the membership degree for each
crisp value. The fuzzy set range for each input lin-
guistic value, based on the universe of discourse, can
therefore be obtained. A crisp value denotes a nu-
merical value placed on the universe of discourse.

 Step 2 (Evaluation of the rule): in this step, the
fuzzified input variables obtained//processed in the
previous step is evaluated by applying them on the
antecedent part of the rules. After every antecedent
part is processed, the consequent part of every rule is
then evaluated by obtaining the membership degree
of the output variables. When multiple antecedent
rules are found, the computation of all the antecedent
rule parts is calculated using the fuzzy set operations
[17, 32]. Then based on the results of the antecedent
rules, the membership degree for every output lin-
guistic rule is achieved.

 Step 3 (Aggregating all the output rules into a single
output rule (fuzzy set)): Given that the degree of
membership for each consequent rule part is obtained
in the previous step, the combination of them into a
single output rule is implemented in this step. This
single output rule is called the single fuzzy set. The
input for this step is a list of membership values for
the output consequent rules and the output of this step
is a fuzzy set for every output variable.

 Step 4 (Defuzification): the final step of the FIP gen-
erates a crisp value for each output linguistic variable
based on its fuzzy set. One of the popular defuzifica-
tion techniques is the center of gravity (COG) method
[33], which aims to find out the point located on the
center of the aggregate fuzzy set for each output
linguistic variable. Formally, the COG can be defined
according to equation (1) [17], for further information
refer to [17].

 
 

b
a S

b
a S

F S S
COG

F S

 



 (1)

3.1 Fuzzy sets

Each linguistic variable in the FLC is associated with
fuzzy sets in GREDFL. The following sets depict the
fuzzy sets for the input and the output linguistic vari-
ables: aql = {conservative, middle, aggressive}, D =
{Little, Average, Long} and DP = {zero, low, moderate,
high}. The fuzzy sets for each linguistic variable are
chosen based on the behavior of their input linguistic
variable. For example, if D input linguistic variable will
be low, and this means average queuing delay for pack-

Cop
y R

igh
ts

M. Baklizi et al.: Fuzzy Logic Controller of Gentle Random Early Detection Based on Average Queue Length and Delay Rate 13

ets is low. Either average or a long represent a medium
or a large average queuing delay for packets, respectively.
Therefore, little, average and a long are the behaviors of
the D.

3.2 Creating membership functions for GREDFL tech-
nique

After the fuzzy sets are identified, the membership
functions will be generated. Generally, the membership
function may take several shapes based on the problem
at hand. For computational simplicity, the membership
function of the linguistic variables, aql and D, are often
considered as triangular or trapezoidal shaped. In the
proposed GREDFL technique trapezoidal has been used.
The chosen membership functions of the linguistic in-
puts and output values in the GREDFL controller, is
shown in Figure 3 and 4. The amount of overlapping
between the membership functions’ areas is significant.
The left and right half of the trapezoidal membership
functions, for each linguistic value, are chosen to pro-
vide membership overlapping with adjacent membership
functions. The overlapping of the fuzzy regions, repre-
senting the continuous domain of each control variable,
contributes to a well-behaved and predictable system
operation. Appendix A shows a scenario of how the
memberships for both aql and D are created.

The sum of the membership’s grades for an input val-
ue, which represents the linguistic values of a specific
input variable, is always one. For the output variable, the
membership functions at the outermost edges cannot be
saturated for the GREDFL controller to be properly de-
fined. The basic reason for this is that in fuzzy-based
decision-making processes we seek to take actions that
specify an exact value for the controlled system’s input.

As illustrated in Figure 3, the final value of aql is K,
where K represents the size of the router buffer as illus-
trated in table 1. On the other hand, in Figure 4, the final
value of D is 2K, this value comes from K/beta, where
beta represents the probability of packet departure,
which equals 0.5.

Figure 5 displays the membership function of the Dp
output linguistic variable. The assumption of member-
ship functions for the Dp linguistic variables are similar
to those in [14]. The boundaries of membership func-
tions and fuzzy sets are chosen by domain experts in
both FL and congestion control fields [17]. The consid-
eration of a membership function for the aql linguistic
variable is given as follows: aql will be in a conservative
fuzzy set when its value is between zero and a 0.25 of
the system capacity. However, the aql will be in the
middle fuzzy set when its value is between 0.2 of system
capacity and 0.75 of system capacity. Finally, the aql
will be in the aggressive fuzzy set when its value is be-
tween 0.7 of system capacity and the finite capacity of

system. Figures 7, 8 and 9 are either trapezoidal or tri-
angular for simple computations [17].

Figure 3. The memberships function of aql, where K repre-

sents the system capacity.

Figure 4. The memberships function of D.

Figure 5. The memberships function of Dp.

3.3 The rules in GREDFL

In this section, the fuzzy logic, which captures human
knowledge and experience about how to control conges-
tion, is set up. Choosing simplest Multiple Input Single
Output (MISO) controller leads to avoid the exponential
increase of the rule base and decrease the complexity of
the controller, when the number of input variables in-
creases [12]. Generally, a good design of the rule-base in
fuzzy logic is prepared based on two aims: First, com-
pleteness which means that all the conditions of the sys-
tem behavior should be taken into the consideration, i.e.,
all arrangements of the input variables should produce

Cop
y R

igh
ts

 International Journal of Fuzzy Systems, Vol. 16, No. 1, March 2014

14

an appropriate output values. Second, consistency which
means that the rule base should not contain any illogical-
ity. A set of rules is inconsistent if there are at least two
rules with the same antecedents-part (input) with differ-
ent consequent-part (output). However, to build the
fuzzy rules, as shown in Figure 5, the input and output
linguistic variables as well as all the fuzzy sets with their
ranges on the universe of discourse must be known.

The knowledge-base for the fuzzy controller which is
generated from IF-THEN control rules has the following
form:{ IF aql is conservative and D is average THEN Dp
is zero}. Where aql and D denote the linguistic variables
associated with the two controller inputs, Dp denotes the
linguistic variable associated with the controller’s output.
The fuzzy rules are determined empirically to obtain the
control signal according to the congestion in the router
buffer. This relationship between the inputs and the out-
put is mainly based on intuitive understanding and con-
siderations (using expert knowledge) of the concept of
congestion control. For example, if the aql is aggressive
and the D is long then the output should be high in order
that the system can respond quickly.

Table 2. The linguistic fuzzy rules of the proposed GREDFL

algorithm based on aql and D.

IF aql is conservative and D is little THEN Dp is zero
IF aql is conservative and D is average THEN Dp is zero
IF aql is conservative and D is a long THEN Dp is zero
IF aql is middle and D is little THEN Dp is zero
IF aql is middle and D is average THEN Dp is zero
IF aql is middle and D is a long THEN Dp is low
IF aql is aggressive and D is little THEN Dp is zero
IF aql is aggressive and D is average THEN Dp is moderate
IF aql is aggressive and D is a long THEN Dp is high

Table 2 indicates that if the aql is in a conservative

fuzzy set, whatever the fuzzy set that the D belongs to it,
the Dp will be in a zero fuzzy set. In case that the aql is
in a middle fuzzy set and the D is in either few or me-
dium fuzzy set, the Dp will be in a zero fuzzy set.
However, if the D is in a lot fuzzy set, then the Dp will
be in a low fuzzy set. Finally, if the aql is in an aggres-
sive fuzzy set, the Dp result depends on the D fuzzy set.
Hence, if the D is in a few fuzzy set, then the Dp is in a
zero fuzzy set, whereas if the D is in medium and a lot
fuzzy sets, then the Dp is in moderate and high fuzzy
sets, respectively. In addition, the FIP is the main com-
ponent in the GREDFL algorithm, which is used at each
router buffer queue. The FIP employs two input vari-
ables (aql, D) to output a single output variable (Dp). At
any time a packet arrives at the router buffer queue in
GREDFL, the FIP uses as congestion detector and con-
troller at the router queues to derive the Dp result
through four steps that mentioned above in Figure 5. The
first step is fuzzification in which the FIP takes the input
crisp values of the aql and D to obtain their membership

degrees. Now, based on the returned membership de-
grees, the fuzzy set for each input linguistic variable is
determined on the universe of discourse. In other words,
the fuzzification step determines the area to which each
input linguistic variable belongs to based on its mem-
bership degree. After the fuzzification step, the rule body
(IF-part) gets evaluated by applying the membership de-
grees of the input linguistic variables in the IF-part to
obtain the membership degree of the output linguistic
variable. Based on the membership degree of the output
variable, the area which the output variable belongs to,
can be determined. In the third step the membership de-
grees of the THEN-part of the rules are aggregated into a
single fuzzy set. The final step is defuzzification, where
the single aggregate fuzzy set of the output variable is
inputted, then using the COG method [34, 35], the out-
put crisp value for the Dp is calculated.

4. Simulation

GRED, REDD1, and the proposed GREDFL are sim-
ulated based on a discrete-time queue that uses slot as a
unit of time [25, 36]. Each slot may involve packet arri-
val and/or departure. The compared algorithms are sim-
ulated by applying them in a network consisting of a
single router buffer node. Notably, both packet arrival
and departure are implemented in single mode .The
scheduling mode is first-come-first-served. The GRED,
REDD1, and GREDFL simulations are implemented in
Java on an i7 processor machine with 1.66 GHz and 4
GB RAM. In the conducted simulation, the probability
of the arriving packets at the router buffer in a slot is
denoted by α [36]. The probability of packet departure
from the router buffer in a slot is denoted by β. Packet
arrivals can be modeled using a Bernoulli process,
whereas packet departures can be modeled using a geo-
metrical distribution. Using geometrical distribution,
packet inter-arrival times and service times are estimated
to the values 1/ α and 1/β, respectively.

5. Performance Evaluation Results of the Fuzzy

Logic Controller Algorithms

In this section, the proposed FLC algorithm
(GREDFL) has been compared with GRED and
REDD1algorithms according to different performance
measures (mql, T, D, PL, Dp) to identify which algorithm
offers the most satisfactory performance measure results.

For the parameter settings, GRED, and REDD1 are in-
itiated using identical parameters at most. To create
congestion and non-congestion scenarios at the buffer,
the probability of packet arrival was set to several values;
each value tends to create a congestion or
non-congestion status. The buffer size room of 20 pack-

Cop
y R

igh
ts

M. Baklizi et al.: Fuzzy Logic Controller of Gentle Random Early Detection Based on Average Queue Length and Delay Rate

15

ets was used to detect congestion at small buffer sizes.
The total number of slots used in the experiments was
2000000. This value allows the incorporation of accurate
performance measures and encapsulates a period is ter-
minated when the system reaches a steady state. The
performance measure results of compared algorithms are
obtained by running the algorithm simulations ten times
with various random seeds, then taking the mean of the
ten results. This ten runs due to remove the bias for any
run results. The compared algorithm simulations imple-
mented by a Java environment on a core 2 duo Centrino
with 1024 MB RAM.

5.1 Mean queue length, throughput, and delay

Table 3 illustrates the output performances of RED,
REDD1, and GREDFL using different probabilities of
packet arrivals. The mql and D results for proposed
GREDFL algorithm and all algorithms are identical up to
certain value of the probability of packet arrival (e.g.,
0.33). In such a low probability value, there is no con-
gestion at their router buffers when the packet arrival
probability value is either 0.18 or 0.33. However, when
the packet arrival probability value increases such as
0.63, GRED algorithm give marginally small values for
mql and D than either GREDFL or REDD1, additionally
GREDFL slightly give smaller performance results than
REDD1 with reference to mql and D.

This is due to REDD1 and GREDFL router buffers
lose marginally larger number of packets than GRED
when congestion occurs (packet arrival probability value
= 0.63). In cases where the packet arrival probability
value increases to be 0.78, GREDFL offers better mql
and D results than GRED and REDD1. Furthermore, at
this probability value of packet arrival, congestion in-
creases, and GREDFL became better than other com-
pared algorithms with regard to mql and D results since
it is stabilized its mql and D at values lower than those of
GRED and REDD1.

Moreover, when the value of packet arrival probability
increases to be greater than 0.78 or 0.93, a heavy con-
gestion situation occurs, GREDFL sustains its mql and D
results at values smaller than of those of GRED and
REDD1. Consequently, GRED and REDD1 produce
slightly higher mql and D results than those of proposed

GREDFL when high congestion has occurred. The T re-
sults under different packet arrival probability values.
After analyzing, the T of the algorithms give similar T
results, whether the probability of packet arrival is set to
a value lower or higher than the probability of packet
departure value. In other words, the algorithms offer
similar T whether or not a heavy congestion situation has
existed.

5.2 Packet loss and dropping probabilities

The proposed GREDFL algorithm is compared with
the GRED, REDD1 algorithms in terms of PL and Dp in
this section. The goal of the conducted comparison is to
show the quantity of packets loss and dropping at the
router buffer in all compared algorithms. The packet loss
probability (PL) is the probability of packet loss due to a
buffer overflow, and packet dropping probability (Dp) is
the probability of dropping packets before a router buffer
has full. The performances of GRED, REDD1 and
GREDFL algorithms in terms of PL and Dp are shown in
Figure 6 and Figure 7, respectively.

In Figure 6, the proposed GREDFL algorithm margin-
ally produces better and least PL performance results
when the probability value of packet arrival is larger
than the probability value of packet departure (existence
of congestion). This is because the router buffer of
GRED and REDD1 overflow more than that of
GREDFL’s router buffer. Moreover, REDD1 router
buffer loses fewer packets than GRED when high con-
gestion has appeared. When the value of packet arrival
probability is smaller than the value of packet departure
probability, all algorithms provide similar PL results
since either a light congestion or no congestion situation.

Figure 7 shows that the proposed GREDFL algorithm
evidently drops more packets at the router buffer than
either GRED orREDD1 algorithms when the probability
of packet arrival is higher than the probability of packet
departure, and this due to GREDFL router buffer loses
fewer packets due to overflow than either router buffer
of GRED or REDD1. Furthermore, GRED drops fewer
packets than REDD1 since GRED loses packets due to
overflow larger than those of REDD1.

Table 3. mql, T and D performance results of GRED, EDD1and proposed GREDFL.

 GRED REDD1 GREDFL
α mql T D mql T D mql T D

0.18 0.457 0.1787 2.5604 0.457 0.1893 2.5604 0.4452 0.1858 2.4462
0.33 1.279 0.3277 3.903 1.279 0.3334 3.903 1.2118 0.3262 3.7244
0.48 6.1005 0.4689 13.009 7.299 0.4733 15.395 6.1788 0.4670 13.226
0.63 13.578 0.497 27.299 14.175 0.4996 28.372 14.094 0.4995 28.2131
0.78 14.7936 0.49885 29.6551 14.4143 0.4998 28.8371 14.233 0.4998 28.4723
0.93 14.9456 0.499 29.9316 14.7639 0.4998 29.5363 14.472 0.4998 28.9517

Cop
y R

igh
ts

16 International Journal of Fuzzy Systems, Vol. 16, No. 1, March 2014

Figure 6. PL vs. probability of packet arrival.

Figure 7. Dp vs. probability of packet arrival.

6. Conclusion

In this paper, an extension to the well-known GRED

algorithm based on fuzzy logic controller has been pro-
posed. The purpose of the proposed extension are as fol-
lows: First, to obtain a more satisfactory performance
with respect to the mean queue length (mql) and the av-
erage queuing delay (D) when a heavy congestion occurs.
Second, lose fewer packets by maintain the router buff-
ers protected from overflow when a heavy congestion
occurs. Third, eliminate the dependency on parameters
setting, as compared to the existing algorithm, relying
upon a FIP as a congestion measure.

The results of the proposed algorithm in comparison
with GRED and REDD1) show that all the compared
algorithms (GRED, REDD1 and the proposed algorithm)
provide similar mql, T and D results when light conges-
tion accrues. Whereas, when the packet arrival probabil-
ity increases to a value near the packet departure prob-
ability value (0.63), GRED algorithm generates margin-
ally better result than those of the REDD1 and the pro-
posed algorithm. Furthermore, if the packet arrival
probability value becomes near 0.78 and 0.93, the pro-
posed technique generates slightly better results than
those of GRED and REDD1 algorithms regarding mql
and D. The results also show that, all the compared algo-
rithms offer similar T in both congestion and no conges-
tion cases. Generally, the proposed algorithm marginally

outperforms the GRED and REDD1 algorithms for PL

when the value of the probability of packet arrival is
larger than the value of the probability of packet depar-
ture or in the event of heavy congestion. Moreover,
GRED and REDD1 drop fewer packets (Dp) at their
router buffers than the proposed algorithm at such a case.

Appendix A: Membership Functions

if (InitialDelay>= 0.0 &&InitialDelay<= 2*Capacity / 4)
{DelayStatus = 0; // Few} if (InitialDelay> 2*Capacity / 4
&&InitialDelay<= 6 * Capacity / 8) {DelayStatus = 0; // Few}

if (DelayStatus= 0) {
if (InitialDelay>= 0.0 &&InitialDelay<= 2*Capacity / 4)

{DelayDegree0 = 1.0;}
if (InitialDelay> 2*Capacity / 4 &&InitialDelay<= 6 * Ca-

pacity / 8) {DelayDegree0 = (6 * Capacity / 8 - InitialDelay) /
(6 * Capacity / 8 - 2*Capacity / 4); }}

if (InitialDelay> 2*Capacity / 4 &&InitialDelay<=
2*Capacity /2) {DelayStatus1 = 1; // Medium}

if (InitialDelay> 2*Capacity / 2 &&InitialDelay<= 6 * Ca-
pacity / 4) {DelayStatus1 = 1; // Medium}

if (InitialDelay> 6 * Capacity / 4 &&InitialDelay<= 14 *
Capacity / 8) {DelayStatus1 = 1; // Medium}

if (DelayStatus1 = 1) {
if (InitialDelay> 2*Capacity / 4 &&InitialDelay<=

2*Capacity /2) {DelayDegree1 = ((InitialDelay - 2*Capacity /
4) / (2*Capacity / 2 - 2*Capacity / 4));}

if (InitialDelay> 2*Capacity / 2 &&InitialDelay<= 6 * Ca-
pacity / 4) {DelayDegree1 = 1.0;}

if (InitialDelay> 6 * Capacity / 4 &&InitialDelay<= 14 *
Capacity / 8) {DelayDegree1 = (14 * Capacity / 8 - InitialDe-
lay) / (14 * Capacity / 8 - 6 * Capacity / 4) ;}}

if (InitialDelay> 3 * Capacity / 2 &&InitialDelay<= 14 *
Capacity / 8) {DelayStatus2 = 2; // Alot }

if (InitialDelay> 14 * Capacity / 8 &&InitialDelay<=
2*Capacity) {DelayStatus2 = 2; // Alot}
if (DelayStatus2 == 2) {
if (InitialDelay> 3 * Capacity / 2 &&InitialDelay<= 14 *

Capacity / 8) {DelayDegree2 = ((InitialDelay - 3 * Capacity /
2) / (14 * Capacity / 8 - 3 * Capacity / 2));}

if (InitialDelay> 7 * Capacity / 8 &&InitialDelay<=
2*Capacity) {DelayDegree2 = 1.0;}}

Appendix B: Memberships Scenarios for aql

if (AverageQueueLength>= 0.0
&&AverageQueueLength<= Capacity / 5)
{AverageQueueLengthStatus0 = 0; // Conservative}

if (AverageQueueLength> Capacity / 5
&&AverageQueueLength<= Capacity / 4)
{AverageQueueLengthStatus0 = 0; // Conservative}

if (AverageQueueLengthStatus0 == 0) {
if (AverageQueueLength>= 0.0
&&AverageQueueLength<= Capacity / 5)
{AverageQueueLengthDegree0 = 1.0;}
if (AverageQueueLength> Capacity / 5

&&AverageQueueLength<= Capacity / 4)

Cop
y R

igh
ts

M. Baklizi et al.: Fuzzy Logic Controller of Gentle Random Early Detection Based on Average Queue Length and Delay Rate

17

{AverageQueueLengthDegree0 = ((Capacity / 4 - Aver-
ageQueueLength) / (Capacity / 4 - Capacity / 5)) ; }}

if (AverageQueueLength>= Capacity / 5
&&AverageQueueLength< Capacity / 3)
{AverageQueueLengthStatus1 = 1; // Medium}

if (AverageQueueLength>= Capacity / 3
&&AverageQueueLength<= Capacity / 2)
{AverageQueueLengthStatus1 = 1; // Medium}

if (AverageQueueLength> Capacity / 2
&&AverageQueueLength<= 3 * Capacity / 4)
{AverageQueueLengthStatus1 = 1; // Medium}

if (AverageQueueLengthStatus1 == 1) {
if (AverageQueueLength>= Capacity / 5

&&AverageQueueLength< Capacity / 3)
{AverageQueueLengthDegree1 = ((AverageQueueLength -
Capacity / 5) / (Capacity / 3 - Capacity / 5));}

if (AverageQueueLength>= Capacity / 3
&&AverageQueueLength<= Capacity / 2)
{AverageQueueLengthDegree1 = 1.0;}

if (AverageQueueLength> Capacity / 2
&&AverageQueueLength<= 3 * Capacity / 4)
{AverageQueueLengthDegree1 = ((3 * Capacity / 4 - Aver-
ageQueueLength) / (3 * Capacity / 4 - Capacity / 2));}}

if (AverageQueueLength>= (0.7 * Capacity)
&&AverageQueueLength< 3 * Capacity / 4)
{AverageQueueLengthStatus2 = 2; // Aggressive}

if (AverageQueueLength>= 3 * Capacity / 4
&&AverageQueueLength<= Capacity)
{AverageQueueLengthStatus2 = 2; // Aggressive}

if (AverageQueueLengthStatus2 == 2) {
if (AverageQueueLength>= (0.7 * Capacity)

&&AverageQueueLength< 3 * Capacity / 4)
{AverageQueueLengthDegree2 = ((AverageQueueLength -
0.7 * Capacity) / (3 * Capacity / 4 - 0.7 * Capacity)) ; }

if (AverageQueueLength>= 3 * Capacity / 4
&&AverageQueueLength<= Capacity)
{AverageQueueLengthDegree2= 1.0;}}

References

[1] D. Lin and R. Morris, “Dynamics of random early

detection,” in ACM SIGCOMM, New York, pp.
127-137, 1997.

[2] T. O. Lakshman et al., “SRED: Stabilized RED,” in
IEEE INFOCOM, pp. 1346-1355, 1999.

[3] G. Thiruchelvi and J. Raja, “A Survey on active
queue management mechanisms,” International
Journal of Computer Science and Network Security,
vol. 8, 2008.

[4] Welzl M., Network congestion control: managing
internet traffic, John Wiley& Sons, August, 2005.

[5] A. S. Tanenbaum, Computer Networks, 4th ed.:
Prentice Hall Ptr, 2002.

[6] C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S.
Fdida, and M. May, “Comparison of tail drop and
active queue management performance for
bulk-data and Web-like Internet,” in IEEE ISCC,

pp. 122-129,2001.
[7] R. Stanojevic, R. N. Shorten, and C. M. Kellet,

“Adaptive tuning of drop-tail buffers for reducing
queuing delays,” IEEE Communications Letters,
vol. 10, pp. 570-572, 2006.

[8] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IEEE/ACM
Trans. on Networking, pp. 397-413, 1993.

[9] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin,
“REM: active queue management,” IEEE Network,
vol. 15, pp. 48-53, 2001.

[10] J. Aweya, M. Ouellette, and D. Y. Montuno, “A
control theoretic approach to active queue man-
agement,” Computer Networks, vol. 36, pp.
203-235, 2001.

[11] A. M. Murshid, S. A. Loan, S. A. Abbasi, and A. R.
M. Alamoud, “A novel VLSI architecture for a
fuzzy inference processor using triangular-shaped
membership function,” International Journal of
Fuzzy Systems, 2012.

[12] M.-S. Kim and S.-G. Kong, “Parallel structure
fuzzy systems for time series prediction,” Interna-
tional Journal of Fuzzy Systems, vol. 3, 2001.

[13] W. J. Chang, P. H. Chen, and C. T. Yang, “Robust
fuzzy congestion control of TCP/AQM router via
perturbed takagi-sugeno fuzzy models,” Interna-
tional Journal of Fuzzy Systems, vol. 15, 2013.

[14] H. Abdel-jaber, M. Mahafzah, F. Thabtah, and M.
Woodward, “Fuzzy logic controller of random ear-
ly detection based on average queue length and
packet loss rate,” Performance Evaluation of
Computer and Telecommunication Systems,
SPECTS. International Symposium, the Proceeding
of the IEEE Explorer, Edinburgh, UK, pp. 16-18,
2008.

[15] S. Ghosh, Q. Razouqi, H. J. Schumacher, and A.
Celmins, “A survey of recent advances in fuzzy
logic in telecommunications networks and new
challenges,” IEEE Trans. on Fuzzy Systems, vol. 6,
pp. 443-447, 1998.

[16] G. J. Klir, “Fuzzy logic,” presented at the Poten-
tials IEEE, 1995.

[17] M. Negnevitsky, Artificial intelligence, Second ed.,
2005.

[18] L. A. Zadeh, “Fuzzy sets,” Information and Con-
trol, vol. 8, pp. 338-353, 1965.

[19] M. Black, “Vagueness: An exercise in logical
analysis,” Philosophy of Science, vol. 4, pp.
427-455, 1990.

[20] E. H. Mamdani and S. Assilian, “An experiment in
linguistic synthesis with a fuzzy logic controller,”
International Journal of Man-Machine Studies, vol.
7, pp. 1-13, 1975.

[21] S. Floyd. Recommendations on using the gentle

Cop
y R

igh
ts

18 International Journal of Fuzzy Systems, Vol. 16, No. 1, March 2014

variant of RED, 2000. Available:
http://www.aciri.org/floyd/red/gentle.html.

[22] H. Abdel-jaber, F. Thabtah, A. M. Daoud, J.
Ababneh, and M. Baklizi, “Performance investiga-
tions of some active queue management techniques
using simulation,” International Journal on New
Computer Architectures and Their Applications,
vol. 2, 2012.

[23] J. Ababneh, H. Abdel-Jaber, F. Thabtah, W. Hadi,
and E. Badarneh, “Derivation of three queue nodes
discrete-time analytical model based on DRED
algorithm,” 7th International Conference on Infor-
mation Technology: New Generations (ITNG), pp.
885-890, 2010.

[24] H. Abdel-Jaber, M. E. Woodward, F. A. Thabtah,
and M. Al-Diabat, “Modelling BLUE active queue
management using discrete-time queue,” Proceed-
ings of the International Conference of Information
Security And Internet Engineering (ICISIE’07),
London, pp. 568-573, 2007.

[25] H. Abdel-Jaber, M. Woodward, F. Thabtah, and A.
Abu-Ali, “Performance evaluation for DRED dis-
crete-time queuing network analytical model,”
Journal of Network and Computer Applications,
vol. 31, pp. 750-770, 2008.

[26] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive
RED: an algorithm for increasing the Robustness
of RED’s active queue management,” AT&T Cen-
ter for Internet Research at ICSI, Aug. 1, 2001.

[27] C. Wang, B. Li, K. Sohraby, and Y. Peng,
“AFRED: An adaptive fuzzy-based control algo-
rithm for active queue management,” Proceedings
of the 28th Annual IEEE International Conference
on Local Computer Networks (LCN'03), IEEE
Computer Society, Washington, DC, USA, 2003,
pp. 12-20.

[28] C. Chrysostomou, A. Pitsillides, L. Rossides, and
A. Sekercioglu, “Fuzzy logic controlled RED:
congestion control in TCP/IP differentiated ser-
vices networks,” Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol.
8, pp. 79-92, 2003.

[29] C. Chrysostomou, A. Pitsillides, G. Hadjipollas, A.
Sekercioglu, and M. Polycarpou, “Fuzzy explicit
marking for congestion control in differentiated
services networks,” Proceedings of the 8th IEEE
International Symposium on Computers and Com-
munication (ISCC’03), pp. 312-319, 2003.

[30] C. Chrysostomou, A. Pitsillides, L. Rossides, M.
Polycarpou, and A. Sekercioglu, “Congestion con-
trol in differentiated services networks using
Fuzzy-RED,” IFAC Control Engineering Practice
(CEP) Journal, 2003.

[31] R. Loukas, S. Kohler, P. Andreas, and T. G. Phuoc,

“Fuzzy RED: congestion control for TCP/IP
Diff-Serv,” Proceeding of 10th Mediterranean
Electrotechnical Conference, MEleCon, pp. 19-22,
2000.

[32] S. Dick, “Toward complex fuzzy logic,” IEEE
Trans. on fuzzy systems, vol. 13, pp. 405-414,
2005.

[33] P. Hajek, “Metamathematics of fuzzy logic,”
Computational Intelligence: An Introduction, 1998.

[34] S. Tasaka, Performance analysis of multiple access
protocol, MIT Press, April, 1986.

[35] D. d. Van, Logic and Structure, Berlin: Springer,
1994.

[36] M. E. Woodward, Communication and computer
networks: Modeling with discrete-time queues,
London: IEEE Computer Society Press (Los
Alamitos, Calif.), 1994.

Mahmoud Khalid Baklizi is a re-
searcher pursuing his Ph.D. in Computer
Science at the National Advanced IPv6
Center of Excellence in University Sains
Malaysia. He received his first degree in
Computer Science from Yarmouk Uni-
versity, Jordan, 2002 and his Master
degree in Computer Information System
from the Arab Academy for Banking and

Financial Sciences, Jordan in 2008. His research area of inter-
est includes Congestion control.

Hussein Abdel-Jaber is a head of de-
partments of Computer Information
Systems (CIS). He received his first de-
gree in Computer Science from Phila-
delphia University, Jordan, 2003 and his
Master degree in Mobile Computing
from the University of Bradford, UK
in2004. His research area of interest in-
cludes Congestion control.

Ahmad Abu Shreha is a researcher in
departments of Computer Information
Systems (CS). He received his first de-
gree in Computer Science from Al
Al-Bayt University (AABU), Jordan,
2004 and his Master degree from
Universiti Sains Malaysia (USM) – Ma-
laysia, 2006. And his phd degree from
Universiti Sains Malaysia (USM) – Ma-

laysia, 2012.

Cop
y R

igh
ts

M. Baklizi et al.: Fuzzy Logic Controller of Gentle Random Early Detection Based on Average Queue Length and Delay Rate

19

Mosleh Mohammad Salem Abualhaj
is a researcher in Faculty of Information
Technology, Assistant Professor in Ahlya
Amman University. He received his first
degree Philadelphia University, Jun-2004,
Computer and Computer Information
Systems, and his Master degree from
The Arab Academy for Banking and
Financial Sciences, Jul-2007, Computer

Information Systems. And his Ph.D. degree from Universiti
Sains Malaysia (USM) – Malaysia, 2012.

Sureswaran Ramadass is a Professor
and the Director of the National Ad-
vanced IPv6 Centre (NAV6) at
Universiti sains Malaysia. Dr.
Sureswaran obtained his BsEE/CE
(Magna Cum Laude) and Masters in
Electrical and ComputerEngineering
from the University of Miami in 1987
and 1990 respectively. He obtained his

Ph.D. from Universiti Sains Malaysia (USM) in 2000 while
serving as a full time faculty in the School of Computer Sci-
ences. Dr. Sureswaran’s recent achievements include being
awarded the Anugerah Tokoh Negara (National Academic
Leader) for Innovation and Commercialization in 2008 by the
Minister of Science and Technology. He was also awarded the
Malaysian Innovation Award by the Prime Minister in 2007.
Dr. Sureswaran is also the founder and headed the team that
successfully took Mlabs Systems Berhad, a high technology
video conferencing company to a successful listing on the
Malaysian Stock Exchange in 2005. Mlabs is the first, and so
far, only university based company to be listed in Malaysia.

Cop
y R

igh
ts

